7th Invest in ME Research International ME Conference 2012

IIMEC7 - Autoimmunity and ME


IIMEC7 London, June 2012

The 7th International ME/CFS Conference 2012 took place on 1st June 2012 in Westminster, London and was attended by presenters and delegates from 16 countries and four continents.

The conferences are meant to provide a platform for high quality biomedical research into ME and only the most blinkered of observers could have failed to see the potential to progress in treatment of this disease if more funding were directed to such research. It also continued to show the promise and real hope of treatments for this illness based on science and proper investigations.

We hope that everyone left not only with an enhanced knowledge gained from the conference but also with renewed hope for development of more treatments for myalgic encephalomyelitis. Invest in ME produced a DVD of the conference containing the complete presentations at the conference plus interviews and plenary session.

We hope that the many contacts which were established at the conference will continue and we hope to remain in contact with as many of you as possible.

Invest in ME organised five events during the conference days and the theme of the conference events was Autoimmunity and ME. The charity included the Clinical Autoimmunity Working Group (BRMEC2) which had taken most of the last year to plan together with the Alison Hunter Memorial Foundation of Australia (AHMF). An evening dinner for researchers was also arranged to allow further discussions about ME research.

The IIMEC7 pre-conference dinner was arranged at short notice and a wonderful presentation was given by Norwegian journalist Jorgen Jelstad. His speech "Words Matter" is available on the DVD.

Invest in ME invited a number of researchers, politicians, media persons and healthcare staff to come to the conference at our expense in order to improve understanding and distribution of correct information about ME.

Our Journal of IiME, together with the conference section, is available on our web site.

The conference for 2012 showed the urgent need for more funding for biomedical research and the sure progress being made by those committed professionals with a clear strategy for scientific advancement. So what's next? For Invest in ME there were some new ideas we shall be working on in the next months. We continued our efforts to fund more biomedical research and attempting to establish our proposal for a biomedical research and examination facility in Norwich - A Centre of Excellence for ME - something which uses the NHS and existing facilities as a basis for provision of research, examinations and treatments for all patients. Working with our colleagues in the European ME Alliance which has now grown to be eleven countries in Europe.

Conference Report

by Dr Rosamund Vallings MB BS

IIMEC7 Conference Report

Invest in ME conference

London, June 1st 2012

The conference was preceded by a 2-day ME/CFS Clinical Autoimmune Working Group meeting (click here). I was privileged to attend this meeting of 20 invited prominent researchers and clinicians. Research into ME/CFS was presented and discussed with a view to ongoing international collaboration. The main conference then followed the next day, and was held in Birdcage Walk, just behind Buckingham Palace, providing an exciting prelude to the Queen's Jubilee weekend.

Security was paramount, and the conference was opened by Dr Ian Gibson after we had had to clear the building for a fire alarm!

The keynote speaker was Professor Don Staines (Gold Coast, Australia). He presented auto-immunity as a plausible hypothesis in the aetiology of ME/CFS. He discussed the research programme being undertaken at Bond University over the past 8 years. He began by asking the question “Is ME an autoimmune disorder?” He described autoimmunity as a reaction of the body to “self- antigens” involving B and T cells.
B cells are antibody-producing and CD20 is a potential biomarker. T cells need major histocompatibility (MHC) recognition. Innate immune responses may be triggered. (e.g. NK cells, macrophages etc). He then discussed the putative autoimmune targets: ME/CFS is often associated with infections such as campylobacter or conditions such as Guillain Barré Syndrome. Multiple Sclerosis (MS) is associated with Epstein Barr Virus. Molecular mimicry may occur (an autoimmune response to an organism or antigen similar to endogenous structures). In Sjogren's syndrome and myasthenia gravis (MG) acetylcholine receptors are autoimmune tagets (e.g. GPCR). Vaso-active neuropeptides(VNs) – related to glucagon, secretin, insulin – are a super family of small peptide or protein-like molecules, and potential activators of adenylate cyclase (AC), which converts ATP to cyclic adenosine monophosphate (cAMP). VNs of particular interest and relevance to ME/CFS were discussed: PACAP, VIP and CGRP.

They are widely distributed in the CNS. Data does support the notion of VN dysfunction in ME/CFS and symptoms do match the putative targets. VPAC2R receptors are dysregulated. There are links to FOXP3 and cAMP metabolism, and the state of receptors is crucial for transmission. cAMP is a very important neurotransmitter involved in the transmission of ATP to AMP. cAMP is a secondary messenger and has a key role in cell metabolism. It acts through CREB and ICER proteins and these have a role in CNS neuroplasticity, involving cognition, memory etc. Further discussion then focused on blood-brain-barrier (BBB) and blood-spinal-barrier (BSB) function. The BBB keeps unwanted substances out of the CNS with pericytes involved. Vasodilation controls the entry of immune cells. Interleukin-1β and TNFα are toxic to BBB and BSB and are antagonized by cAMP. GPCRs may be inhibitory or stimulatory. Autoimmunity can lead to loss of organ function. PACAP and VIP are regulatory co-transmitters. Skeletal muscle and autonomic transmission maybe implicated. They also act on the acetylcholine system. Various other functions may include: regulation of cardiac firing; an anti-apoptosis role in neuronal cells; insulin control; hypoxia regulation; glutamate metabolism Recent developments in purinergic signaling also contribute to understanding of pathomechanisms involving VNs in relation to ME/CFS. ATP signals cellular stress and negatively regulates AC.

ATP may also have extracellular effects. There are also roles for VNs in Tregs (regulatory T cells) and NK cells. Tregs have an important contributory role.

Another question asked was: Are there abnormalities in mRNA and microRNA?

Discussion then followed as to whether symptoms of ME/CFS relate to neurotransmitter function, Purinergic signalling is involved in neuropathic pain. VN function is involved in neurohormonal function, immunoregulation, and cardiotropic regulation. Pathomechanisms indicate derangements in the VN function. Abnormalities have been shown on MRI, showing disorders of micro-circulation, which are associated with onset of illness, loss of CNS function and illness severity.

In conclusion, Prof Staines feels that a novel auto-immune mechanism may be involved implicating vaso-active neuropeptides. This hopefully will eventually lead to treatments.

Dr Sonya Marshall-Gradisnik (Gold Coast, Australia) presented her work on immunological dysfunction as possible biomarkers for ME/CFS. She pointed out initially that the pathomechanism is unknown, there is no diagnostic test but there is evidence of immunological dysfunction. NK cell function is down, Treg function is implicated in ME/CFS, and research into B cells suggests an auto-immune disorder.

There is significant reduction in NK cell function coupled with significant reduction in intracellular perforin, which is responsible for NK cell lysis.

Potential biomarkers include: NK phenotypes, KIR expression, decreased CD8 cell lysis function, decreased gene expression of lytic proteins of NK cells, decreased microRNA.

She then described diagrammatically the function of the NK cells.

There is significantly reduced NK cell function in ME/CFS, which is consistent over time. However the function is similarly decreased in the moderately affected group, so severity is not necessarily significant. There are 2 types of NK phenotypes: dim and bright. The dim seem unaffected in CFS, the bright very much decreased. This is consistent over time in this illness. NK cells are regulated by Tregs. One KIR receptor is associated with NK cell lysis reduction. mRNA gene expression relates to GZMA lytic protein which is significantly decreased in ME/CFS – this is a potential biomarker.

MicroRNA – there is a very small non-protein coding RNA. The mechanism of post-transcriptional gene expression is based on complimentary microRNA. Differential microRNA expression is found in NK and CD8 cells. 16 microRNA studies have been performed and significant difference was found in 9 in ME/CFS. MicroRNA regulates Treg cell function. Treg cells have been measured. FoxP3 is part of Treg function and is elevated over time in ME/CFS, as is CD39 expression. VPACR2 expression in lymphocytes is also elevated in ME/CFS.

In Norway, Mella and Fluge are investigating anti-CD20 intervention using the drug Rituximab.

Results suggest that ME/CFS may be an autoimmune condition.

NK cytotoxic activity, NK phenotypes and NK proteins remain as the most consistent immunological markers. Emerging areas include: CD8 lysis, microRNA and Treg subsets. These may provide further promise for biomarker development.

Professor Hugh Perry (Southampton, UK) spoke on neuro-inflammation in chronic disease. He described how the symptoms of systemic inflammation affect behaviour. This is not maladaptive, but of survival value. This is an organized strategy and is what occurs in the wild, leading to homeostasis. Examples of effects on behaviour were given such as fever, leading to lethargy, leading to rest. The inflammatory response “speaks” to the brain. The key players are the macrophages in the brain known as microglia. The microglia are down-regulated by various molecules expressed (inhibitory receptors). In the diseased brain microglia proliferate and then are activated. Perivascular macrophages communicate with the microglia, which in turn affect the neurons.

These inflammatory changes are seen in Alzheimer's disease. Systemic infection in elderly sufferers may be acute or chronic. Worsening symptoms are associated with increased microglia and cytokines in the brain. A longitudinal study was reported in 300 Alzheimer's patients with 6 months follow up of infective episodes. The more infections reported the greater the decline in cognition.

Circulating cytokines lead to increased levels of sickness behaviour. i.e. the microglia have been primed by infection and the symptoms of underlying brain disease worsen. It is possible microglia are primed by other events. Priming of microglia can occur as a result of prior infection weeks or months beforehand. It is likely that a past history of infection can increase responses in the brain.

He described experiments where rats were infected with S.typhi systemically. There was increased cytokine activity and bacteria were cleared in 1-2 weeks. However, the pro-inflammatory cytokines continued to have effects on the brain with switching on of microglia. All the vascularity of the brain can be affected and effects persevere for months. The environment can have priming effects on the microglia. For example animals who were housed in a “dirty” environment had greater priming, with larger inflammatory response.

He said that ME/CFS seems like an exaggerated form of systemic inflammation with a distortion of homeostasis. Immune to brain communication may have become maladaptive. There may have been a primed innate response in the CNS, which may be the result of genetic predisposition/infection/inflammation/neurodegeneration.

Professor Maria Fitzgerald (London, UK) discussed pain in ME/CFS. She initially gave an overview of chronic pain, and described it as a CNS problem. Pain has a purpose and this may involve: warning, defence, escape, learning, protection, rest, healing etc. Rest is part of the healing process. Pain can be maladaptive:

She went on to describe the physiology and pathology of pain. It is nociceptive. Persistent pain may be inflammatory or neuropathic. Inflammatory pain is usually tender, aching and accompanied by stiffness. Neuropathic pain is usually stabbing, burning or shock-like. The nature of pain is complex:

 

Sensory component

Motor/autonomic component

Affective component

Can alter brain function (e.g. anxiety)

Affects attention

Individual differences

Culture, gender and age all have effects

There are multiple sites of pain processing. Pain information is modified as it travels to the brain. It can be unpredictable at every level. The nociceptors can be primed (e.g. by an inflammatory agent) leading to hyper-excitability.

In CFS/ME there is altered CNS processing. Fibromyalgia (FM) patients perceive greater intensity and greater temporal summation. Sensations increase in magnitude, and the CNS winds up more and more. There is alteration of endogenous pain control. FM patients lack diffuse noxious inhibitory control. Normally there is ability to inhibit pain (endogenous opioids). There is altered cortical pain processing in CFS/ME. Numerous areas of the cortex are involved. There is activation of the limbic system (anterior insular-based ganglia and cingulated cortex). The CNS is acting very differently.

Some people may have a genetic predisposition to feel more pain. Single Nucleotide Polymorphisms (SNPs) suggest genes related to pain sensitivity. Plans to incorporate genotyping are needed. Early life experiences may alter pain sensitivity in adult life – e.g. premature babies who have had a lot of pain exposure, may develop an altered pain threshold. “Injury “ in the first 10 days of life may promote effects that last into adulthood, leading to vulnerability, particularly if the same injury occurs, and the effects can be increasingly severe. It is not necessary to have an infection to prime the microglia, but a “wound” can lead to microglial activation.

The conclusion was that genetic determinants and early life experiences lead to nociceptor sensitisation, which is a potential cause of pain in CFS/ME.

Dr Mario Delgado (Granada, Spain) discussed his work with vaso-active neuropeptides. He said there are potential therapeutic opportunities. There is a need to establish a homeostatic balance. Cytokines are involved in the immune balance. The brain and immune system speak the same biochemical language. Vasoactive intestinal peptide (VIP) is found throughout the body and is produced in the CNS, the periphery and non-neural cells. It has a plethora of functions. It is involved in the pathway which activates adenylate cyclase (AC) which in turn impacts on ATP and cAMP metabolism. AC and cAMP signals are critical for neuronal survival and other brain function. VIP receptors are expressed in immune cells and have immunomodulatory activity.

He described therapeutic effects on experimental inflammation and auto-immunity, and finds there is helpful potential in a number of diseases. VIP protects from the lethality of endotoxins. It is neuroprotective in neuro-inflammation caused by brain trauma, and is therapeutic in collagen-induced arthritis. It also has potential for treating experimental autoimmune encephalomyelitis (EAE) (animal model of MS). In this condition it inhibits the inflammatory response and the Th1 response. It also induces the emergence of CD4 CD25 Tregs during EAE. Neuropeptides induce the generation of different types of Treg cells. VIP has been shown to be an important neuropeptide in immune tolerance.

He then asked several questions:

a) Does a healthy VIP system make us more healthy?

b) Is there a role in ME/CFS? – as many symptoms relate to the effects of VIP.

 c) Is VIP ready for the clinical situation? - need to consider: side effects, stability, non-oral administration

d) What are the effects on immunosuppression?

Aviptadil (an analogue of VIP) is marketed for some conditions such as erectile dysfunction and the inflammation associated with sarcoid. VIP has also had some success in Guillain Barre Syndrome and ciguatera poisoning. A clinical trial is in progress looking at VIP by inhalation.

Professor James Baraniuk (Washington DC, USA) discussed potential mechanisms of ME/CFS symptoms. He had designed a simple questionnaire using the Fukuda criteria and looked at severity scores. He had produced a 3D diagram and had divided his findings into 4 groups. The ME/CFS symptoms could be clustered, and matched the cerebral spinal fluid proteomics.

He then went on to discuss the symptoms seen in ME/CFS in general.

a) Headaches He found the prevalence of migraine headaches to be 75-80%. 2/3 of these had no aura, and 1/3 had aura. There was an accompanying range of symptoms. There was improvement with triptans. 67% of those with migraine were found to also have fibromyalgia. There was also a high prevalence of these symptoms in Gulf War Illness. Migraine can cause abnormal cortical depolarization and abnormal pain processing, and accompanying central desensitization. He hypothesised that migraine is initiated in the brainstem.

 b) Pain and tenderness There was increased sensitivity to deep pressure in FM. There was also increased sensitivity of proprioceptive and stretch receptors on nerves innervating the joint capsules, tendons etc. There maybe loss of the anti-nociceptive system, and loss of norepinephrine release, which normally regulates responses, and initiates autonomic responses. It is as if “the light is on but no-one is home”, and the brain is in a default mode pathway. He looked at pain dolorimetry – pressure-induced thresholds, and did frequency analyses. Central sensitization starts in the periphery – there maybe peripheral sensitisation such as by hay fever. Spinal sensitization leads to hyperalgesia and allodynia. Microglia are the key players, and microgliosis occurs in pain. There is potential for microglial-neural biomarkers and useful therapeutics. Potential treatments discussed were: Reservatrol (in red wine), antipsychotics, tricyclic antidepressants, anti-oxidants, endocannabinoids (medical marijuana).

c) Brain fog – He discussed the findings in the grey matter, in particular the midbrain reticular substance and periaqueductal grey matter. Changes indicated that the body's alarm clock is damaged. There was decrease in the white matter depending on the duration of fatigue, and it was found to shrink by about 1% per year.

d) Sleep It is likely the brainstem is involved

e) Effects of exercise With exercise, the brain fMRI shows improvement in healthy people. He then described 2 types of people with CFS: “Increasers” who on day 2 of exercise have to work very hard to improve their mental score. And “decreasers”, whose fMRI shows a lot of activation on day1, but no task activation ability on day 2. They are in default mode only.

The conclusions in this presentation were: That fatigue is the result of all symptoms, that headache is a result of myalgia and that general symptoms are due to a fundamental effect in the brainstem.

Professor Olav Mella and Dr Øystein Fluge (Bergen, Norway) did a joint presentation looking at B cell lymphocyte depletion in ME/CFS. They reiterated how 3 original lymphoma patients who coincidentally had ME/CFS had improved remarkably following treatment for their lymphoma with the B cell targeting drug Rituximab. In these patients all symptoms relating to their ME/CFS diminished with the treatment. B cells may have something to do with central mechanisms. The responses however were delayed for up to 6-12 weeks, despite B cells being cleared in about 2 weeks.

A further larger control study was undertaken. Patients in the study group were infused with 2 infusions of Rituximab 2 weeks apart, and the controls were similarly infused, but with normal saline. These patients were then followed every 2 weeks for 12 months. In all patients there was a strong family history of autoimmune disease. Side effects were infrequent – in 2 treated patients, their psoriasis worsened. 2 patients felt “unease” and some insomnia. Several patients had normalization of a previously abnormal menstrual cycle. There was a positive response in 67% of patients. There was a 13% response in the placebo group. Again there was delay in response and after the effects wore off the response declined but was re-instated at the 2nd infusion. Some patients however continued to improve but there was not a consistent pattern. BAFF (B cell activating factor) was lower in CFS patients than controls after treatment. BAFF is increased in auto-immune disease. BAFF was again increased at 3-6 and 8 month follow ups. This is the expected normal feedback mechanism. Psychological symptoms did not change indicating this was therefore not a psychological illness.

There are ongoing studies.

1) 26 patients to be observed for 15 months. This is a subjective study without controls.

And 2) A severe group of 6 patients. Plasma exchange may be given before treatment with Rituximab. Patients will be given 2 infusions 2 weeks apart, with maintenance therapy at 3-6-10 and 15 months. Follow up will be for 3 years. Non responders will be given etanercept weekly subcutaneously for a year. They are also looking at a study on genetic predisposition in 3 families. As yet there is no clear candidate as a plausible target for an autoimmune process. Over the past 3 years they have looked for a specific autoantibody, but have found none so far. Something else may be triggering a pro-inflammatory state.

They reiterated that patients should not be treated with Rituximab outside clinical trials.

The next presentation was by Professor Indre Ljungar (Stockholm, Sweden). Her focus was on a one year experience of a standardized team-based assessment of suspected ME/CFS. The aim of this ME/CFS project was to improve diagnosis, transfer clinical knowledge to primary care, to establish rehabilitation methods and to conduct research. The project was established in 2010 and used a team based approach such as used in other diseases. A multidisciplinary team was involved consisting of a doctor, nurse, psychologist, physiotherapist, occupational therapist and social worker. Diagnosis was based on the Fukuda and Canadian 2003 case definitions. Every patient had a full medical workup, and a wide range of tests were used. Included were blood and urine analysis, polysomnography, 3T brain MRI. Also included were 2-day activity scores, sleep questionnaire, WAIS, SF36 etc.

In the past year 101 patient visits were referred for evaluation, and ME/CFS was suspected in 55%. Of these 33 fulfilled the criteria for ME/CFS. Of the others, diagnoses included psychiatric illness, sleep disorders, neuropsychiatric disorders, other physical illnesses, fibromyalgia, idiopathic fatigue etc. The importance of multi-disciplinary team assessment, coupled with thorough medical investigation was stressed, as symptoms are very complex and there is considerable overlap with other disorders. This approach helps to create a homogenous group for potential research. Subjective symptoms can be tested objectively and reliable diagnosis helps in recommending treatment.

Dr Daniel Peterson (Incline Village, Nevada, USA) gave a clinical research update. 6000 articles have now been published on ME/CFS. The greatest challenge is the disease itself, and there is a lack of biomarkers. In clinical research, IT and translational medicine are becoming more widely used. Translational research leads to multidisciplinary collaboration, accountability and standards, shared data and data integration and common goals drive the advancement of applied science. The benefits are: larger samples, decreased cost, more controls, increased value of results, decreased time lines, and the whole approach is more manageable for clinicians and researchers, many of whom may only work part-time. The disadvantages are that technology is forever playing catch-up and there is almost too much information generated.

He went on to describe several new projects:

a) XMRV/MLV – funded by NIH at 5 sites, using a centralized lab. Results will be published at end of June 2012. Samples have been established, so may be open to further research.

 b) Chronic Fatigue Initiative pathogen discovery project to establish a biobank. There are 40 patients and 40 healthy controls at 5 sites. Samples of blood, saliva, urine, faeces and tears will be taken. This will help to establish subsets, which is particularly important for pathogen discovery. A centralized biobank will be established and samples kept at minus 80̊C.

 c) Collaborative research using cerebro-spinal fluid. The goal is to look for aberrations, pathogens and markers. 30 cases are being investigated, evaluating cytokines and microRNA in the spinal fluid

d) Simmaron/Bond – molecular and cellular investigation to identify NK function.

e) CFIDS funded research projects – have established the Research Institute without Walls for translational research, and are funding 5 studies: 1) Brain imaging looking at blood markers after exertion. 2) Cognitive improvement looking at treatment of unrefreshing sleep and effectiveness of drugs 3) Epigenetic markers –(heritable changes in gene expression) 4) Brain fog, orthostatic challenges and therapeutic approaches. 5) Autonomic dysfunction looking at neuromuscular strain/central sensitization.

f) CASA (collection, aggregation, storage and analysis) – a collaborative effort between the NIH, CDC and clinicians and researchers comparing studies of ME/CFS. Using many different questionnaires is not helpful, and a consensus document is needed using standardized questionnaires. Results are otherwise divergent and often not useful. The goals therefore are to establish research standards and determine appropriate tools.

g) The Open Medicine Institute headed by Dr Andreas Kojelnik.

Dr Andreas Kojelnik (California, USA) is Medical Director of the Open Medicine Institute (OMI) – a community-based research clinic focused on chronic infectious diseases, neuro-immune disease and immunology. He feels there is much optimism now in that treatments are beginning to emerge, mainstream science is getting interested and technologies are advancing our understanding. Disease acceptance in 2012 is far better than in 1992, and he pointed out that many other diseases have been through a similar history, with understanding evolving slowly. We are in a different era now, with genetic profiling becoming useful, and accurate in diagnosis and treatment. In ME/CFS there is a syndromic research conundrum. There is a lot of overlap, definitions are not mature, there is scarcity of biomarkers, treatments are not standardized and outcome data is limited.

He described how the OMI works by creating a network between biotechnology, informantics, social networking and biosampling all linking into clinical medicine and research. There is need for convergence of these disciplines. A large network gains: longitudinal controls, plenty of samples, a lot of pilot treatments, control over protocols and standards, control over lab measurements and standards and options to use the best of the best.

He went on to describe research progress in the past year:

 a) Positive studies with Rituximab

 b) XMRV studies “debunked”

c) CDC funding clinical networks

d) Ampligen study published

e) Other molecular studies showing progress: e.g. spinal fluid in ME/CFS vs Lyme disease, blood findings in depression vs ME/CFS/FM

 

He then outlined the work being undertaken at the OMI: Diagnostic studies

a) Viral flora –. sequencing and quantitation

b) Antibody/antigen array

c) Cytokine arrays

d) Deep sequencing

Treatment studies:

a) Valganciclovir and other antivirals (NB long delays in response)

b) Anti-inflammatories

c) Rituximab

d) Rifaxamin (antibiotic) etc Aetiology studies a) Immunological studies b) Infections: bacterial, viral c) Metabolic derangements (VO2 max, mitochondria etc)

d) Environmental factors (heavy metals, diet etc)

Today, much collaboration is occurring internationally between academia, industry and government. The OMI is very involved and now has a biobank of 10,000 patients.

This conference was organized by Invest in ME, and I must thank them for producing a wonderful event. Thanks must also go to the Alison Hunter Memorial Foundation and ANZMES for enabling me to attend.

Rosamund Vallings MNZM, MBBS

The views expressed at the Invest in ME International ME Conference conferences by the presenters and delegates to the conference and any information material distributed are their own personal opinions that are not necessarily shared or endorsed by the Trustees of Invest in ME/Invest in ME Research.

Invest in ME/Invest in ME Research accept no responsibility for the views expressed or any subsequent action taken. The contents of any presentation should not be deemed to be an endorsement, recommendation or approval of such content by Invest in ME/Invest in ME Research. The materials presented at the 1st Invest in ME International ME Conference 2006 do not constitute medical advice. No medical recommendations are given or implied by Invest in ME/Invest in ME Research. Any person registering or attending an Invest in ME/Invest in ME Research conference, or purchasing the DVD, who may take any action or consider medical treatment or referrals should take detailed advice from their own medical practitioner. Invest in ME/Invest in ME Research disclaims any implied guarantee about the accuracy, completeness, timeliness or relevance of any information contained at the conference.

By purchasing any of the conference DVDs you agree that Invest in ME/Invest in ME Research is not liable for any complications, injuries, loss or other medical problems arising from, or in connection with, the use of or reliance upon any information contained in the conference.


IIMEC7 GALLERY

Images from IIMEC7, London, 2012


Comments about Invest in ME Research Conferences


Biomedical Research into ME Colloquium 2 - 2012

IiME Research Meeting London, 2012 - #BRMEC2

To raise awareness of ME, and promote collaboration, innovation and foundations for a clearer strategy of biomedical research into ME, Invest in ME has joined with the Alison Hunter Memorial Foundation of Australia - in cooperation with Bond University and University of East Anglia - to establish a Clinical Autoimmunity Working Group which met in London on 30-31st May 2012.

Medical and scientific experts from around the world convened in London on 30 and 31 May to discuss recent scientific developments in understanding myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Co-Chair of the clinical autoimmunity working group for ME/CFS, public health physician Dr Don Staines stated

'The recent discovery from researchers in Norway that an anti- CD20 B cell- depleting drug had a marked benefit in the treatment of ME/CFS has sent a clear message to scientists and medical practitioners around the world that this disease may have an autoimmune origin'.

While the clinicians who made the discovery, Dr Oystein Fluge and Dr Olav Mella and co-workers remained guarded in drawing unwarranted conclusions from the study published in PLoS late last year, further studies were being planned in the hope of extending the study to a number of clinical sites and to increase the number of patients in the studies.

Dr Staines said

'The findings of Drs Fluge and Mella and their co-workers are consistent with theories previously published that ME/CFS may be an autoimmune disease. Despite compelling evidence that this disease is linked epidemiologically to infection and the disorder possibly being a post-infection disturbance of the immune system, little funding has gone into studies of autoimmunity. This is clearly a multi-system illness which has been badly managed in terms of the research agenda.'

Experts who will attended the meeting included Professor Noel Rose, Director of Autoimmune Disease Research at Johns Hopkins Hospital (USA), Professor Stephen Miller (USA), Dr Mario Delgado (Spain) and Professor Hugh Perry, the chairman of the UK Medical Research Council Neurosciences and Mental Health Board. Immunological discoveries which may serve to act as biomarkers for ME/CFS will be presented by Dr Sonya Marshall-Gradisnik, Bond University, Australia.

The research meeting was held in London and preceded the IIMEC7 annual international biomedical research conference on 1st June 2012.

Use this link to go to the BRMEC Colloquium page.

Our Sponsors for IIMEC7

Invest in ME wish to thank the following organisations for helping to sponsor the 5th Invest in ME International ME Conference 2010.


The Irish ME Trust

The Irish ME Trust have sponsored a speaker at all of our conferences and we would like to thank them for their continued support.


Our Past Conferences


Invest in ME Research Activity - Mainstreaming Research into ME


The charity does not only arrange and host research Colloquiums and Conferences.

Use our website references in the links below to view other work performed by Invest in ME Research.




Research

IIMER are facilitating a strategy of biomedical research into ME. The charity is funding important high-quality research projects for ME in the UK with international collaboration.
Currently the main hub of research is at Quadram Institute Bioscience and University of East Anglia ) in the Norwich Research Park and we have funded research at UCL. These projects involve a gut microbiota project in Norwich and B cell research in London.

Research Colloquiums

In addition to the International ME Conference the charity also organises an annual International Research Colloquium which attracts researchers from around the world in order to discuss experiences and open up collaborations in order to find answers for this disease.
The charity has also initiated the Thinking the Future network for young/early career researchers and organises an annual conference to bring new talent into the field.

Centre of Excellence for ME

Translational biomedical research - an iterative feedback of information between the basic and clinical research domains in order to accelerate knowledge translation from lab to bedside and back to lab again - allows translation of findings in basic research more quickly and efficiently into medical practice to produce more meaningful health outcomes and facilitate the sharing of repositories and research-based facilities and laboratories. This is the model IiMER are attempting to promote in the development of a UL/European Centre of Excellence for ME based in Norwich.


European Collaboration

Invest in ME Research is one of the founder members of the European ME Alliance (EMEA) – a grouping of charities and patient organisations working together across Europe. Now fifteen European countries collaborating.

European Initiatives

In order to expedite research and clinical expertise for ME the charity has initiated the European ME Clinicians Council and the European ME Research Group to bring together the best European to work together and form credible and productive biomedical research strategies which will provide the best and quickest route for possible treatment(s)/cure(s) for this disease.

Let's Do It For ME

Let's do it for ME! is a patient-driven campaign to raise awareness and vital funds for a UK centre of excellence for translational biomedical ME research, clinical assessment, diagnosis and treatment for patients, training and information for healthcare staff, based around the Norwich Research Park in the UK and aiming to work collaboratively with international biomedical researchers.


Invest in ME Research

We welcome support to enable us to build and sustain a strategy of high-quality biomedical research into ME.

To support our work in developing a Centre of Excdellence for ME research please see this link .



Contact Invest in ME Research

Success! Your message has been sent to us.
Error! There was an error sending your message.

Contact Us

Get in Touch

If you have any questions regarding the conference then please contact us by email and we will get back to you as soon as possible.
Thank you for your interest in the charity.


The Office

  • Address: Invest in ME Research
    PO Box 561 Eastleigh SO50 0GQ Hampshire, UK
  • Phone: 02380 643736 / 07759 349743
  • Email:

Follow Us or Support Us

Last Update 10/08/2019